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Absztrakt. Programming theorems are important tools of programming methodology. By 

using analogous programming techniques, the solutions of different tasks can be created 

easily and fast based on programming theorems. Perhaps the summation is the simplest 

programming theorem that is widely-known among the programmers but once and for all 

the most various tasks can be solved by this theorem. The aim of the present paper is to 

investigate the summation programming theorem. Several different abstract levels of this 

theorem will be defined and the problem types that can be solved based on summation are 

going to be described. We will underline those points of a programming theorem that make 

a theorem general and that are not defined in advance, just later during its application, when 

the solution of a problem is derived from the theorem. 
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1. Introduction 

Programming theorems are used frequently to plan algorithms. A programming theorem is a 

pattern, a problem-program (task-algorithm) pair where a program can solve the problem. All 

the tasks that are similar to the problem of a theorem can be solved on the basis of the algorithm 

of the theorem. Programming theorems (summation, counting, maximum selection, and linear 

searching, etc. [1], [4]) are well-known by all programmers but only a few of them know that 

these theorems can be expressed in multiple ways.  

Most programmers consider programming theorems as sample solutions. When they want to 

solve a task that is similar to the problem of a theorem, they try to repeat the same activities that 

created the program of the theorem. [2] Thus programming theorems support their algorithmic 

way of thinking that is used to construct the algorithm of their task.  

However, there exists another method to create programs based on programming theorems. 

This is derivation. [1], [7] Starting from the exact comparison of the task to be solved and of the 

problem of the candidate programming theorem, the program of the theorem has to be updated 

according to the differences between the task and the problem. [3], [5] Thus, without algorithmic 

way of thinking, the program by which the new task is solved can be produced almost 

automatically. This method is faster and guarantees the correctness of the algorithm but it 

requires the formal description of the task. The whole of this paper can be articulated from this 

single point of view, i.e. when algorithms are planned with derivation. 

Perhaps the summation is the simplest programming theorem. Both its goal and its algorithm 

are clear, most programmers use it in their practice.  At first glance we cannot think how 

variously the summation can be applied and how many different problems can be solved with it. 

For example, we can do summation over the elements of an array, over the elements given by an 

appropriate function, or over the elements provided by a special activity, an enumeration [4]. 
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The only common characteristic of these usages is that the operator of the summation is defined 

on these elements.  

According to the way that the task of the programming theorem is generalized, different 

versions of the theorem can be obtained. [6] In this paper three versions of the programming 

theorem of summation are going to be defined. Many types of tasks that can be solved based on 

these versions will be investigated, so we will show the force of summation.  

2. The three levels of the programming theorem of summation 

One of the common features of programming theorems is that they process a sequence of 

elementary values. The way these values are produced may differ. Summations may be 

distinguished according to these three levels.  

Since the most widely-known sequence is the one-dimensional array, the first level of the 

programming theorem of summation in array will be defined. The summation operator is defined 

over the elements of this array. 

A higher level is when an appropriate function gives the elements that must be processed. 

The domain of this function is always an interval of integers. (Hereafter [m..n] denotes the 

integer interval [m,n]  ℤ.) This function is more universal than an array: each array can be 

interpreted as a function over integer interval. In fact in this case, the elements of the interval 

[m..n] are enumerated and a function (f) is given that maps from these elements to the set (H) 

over which the summation operator is defined.  

The third level is when the elements are provided by a special activity, an enumeration. The 

enumerator is an object that disposes the four enumeration operators: First(), Next(), End(), 

Current(). These operators permit the iteration of the elements that must be processed. The 

elements of an array can be iterated like the proper divisors of a natural number. A function is 

needed that maps from these elements to the set (H) over which the summation operator is 

defined. This point of view gives more universal definitions of programming theorem of 

summation.  

2.1. Summation in array 

 

Problem: 

An array over an integer interval m..n is given where its elements are derived 

from the set H. (Notation of this array is array([m..n], H)). There is also an 

associative operator (+:H×HH) with a left-hand zero element. Let us call it as 

summation operator. We need to calculate the sum of the elements of the array. 

Specification: 

Input :  x : array([m..n], H) (input variables) 

Output :  s : H   (output variable) 

Precondition  : x=x0   (x0 is an arbitrary array) 

Postcondition : x=x0   s =


n

mi

ix ][   
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Algorithm: 

s := 0  

i = m .. n i:ℕ (auxiliary variable) 

 s := s + x[i]  

2.2. Summation over interval 

 

Problem: 

m..n is an integer interval and a function f:[m..n]H where H  is an arbitrary set 

is given. There exists an associative summation operator over the set H with a 

left-hand zero element (+:H×HH). We need to calculate the sum of the values 

created by the function f over the interval m..n. [1], [7] 

 

Specification: 

Input :  m : ℤ, n : ℤ  (input variables) 

Output :  s : H   (output variable) 

Precondition  : m=m0  n=n0  (m0, n0 are arbitrary integers) 

Postcondition : m=m0  n=n0  s =


n

mi

if )(  

We remark that in the concrete cases the definition of the function f:[m..n]H is an 

important part of the specification. 

 

Algorithm: 

s := 0  

i = m .. n i:ℕ (auxiliary variable) 

 s := s + f(i)   

2.3. Summation on enumerator 

 

Problem: 

An enumerator is given that can iterate the elements of a finite non-empty 

sequence which belong to the set E (enor(E) denotes the type of this 

enumerator). A function is given f:EH where H is an arbitrary set with an 

associative summation operator (+:H×HH) with a left-hand zero element. We 

need to calculate the sum of the values created by the function f over the 

elements of the enumeration. [4], [5], [7] 

Specification: 

Input :  t : enor(E)  (input variable) 

Output :   s : H   (output variable) 
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Precondition  : t=t0   (t0 is an arbitrary enumerator) 

Postcondition : s = 
 0te

ef )(  

Algorithm: 

s := 0 

t.First() 

t.End() 

 s := s + f(t.Current())  

 t.Next() 

3. Applications of the summation 

Now a number of examples will be shown how the different levels of the summation can be 

applied in programming. 

3.1. Summation tasks with array 

This version of the programming theorem of the summation can be used for example when the 

sum of an array of real numbers is needed to calculate their average (i.e. arithmetical mean). In 

this case the summation operator is a simple addition, so this is a traditional usage of the 

summation.  

But this very version helps to compute the geometrical mean of the array, too.  

Input :  x : array([1..n], ℝ) 

Output :  geoave : ℝ 

Precondition  : x=x0 

Postcondition : x=x0  s =


n

1i

ix ][   geoave = n s  

However in this case the summation operator must be substituted with the multiplication of 

real numbers which is associative and its zero element is 1. Now the set H is ℝ. 

 

s := 1 s:ℝ 

i = 1 .. n i:ℕ 

 s := s ∙ x[i]  

geoave:= n s   

 

Sometimes the tasks like maximum selection can be solved with the summation 

programming theorem if the set H is well-ordered with regard to a totally order relation, i. e. all 

subsets of H have got a minimum. In this case the operator max:H×HH can be introduced. 
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This operator is associative and its zero element is the minimum of the set H. For example, if the 

maximal element of an array including natural numbers must be found, then the specification of 

this problem is the following: 

Input :  x : array([m..n], ℕ) 

Output :  maxvalue : ℕ 

Precondition  : x=x0 

Postcondition : x=x0  maxvalue = ][ix
n

mi
MAX  

The solution of this problem can be derived from the summation so that the variable s is the 

maxvalue, the set H is ℕ, the summation operator is the operator max, its zero element is 0, and 

instead of the assignment maxvalue := max(maxvalue, x[i]) an alternative construct is allowed to 

be written: 

 

maxvalue := 0  

i = m .. n i:ℕ 

 maxvalue < x[i]  

 maxvalue := x[i] –  

 

The next task is a typical decision problem. An array including logical values is given and 

the question is if there exists a true value in that array.  

Input :  x : array([m..n], 𝕃) 

Output :  l : 𝕃 

Precondition  : x=x0 

Postcondition : x=x0  l = ][ix
n

mi
  

In the postcondition the shorter form of equation l=∃i∊[m..n]: x[i] is used. 

The solution of this problem can also be derived from the summation so that the variable s is 

the l, the set H is ℤ, the set H is 𝕃, the summation operator is the operator :𝕃×𝕃𝕃, and its 

zero element is false. (The solution of the dual task of the previous problem, where the question 

is if there are all values of that array are true, can be solved analogously. In this case the 

summation operator is the operator :×𝕃𝕃, and its zero element is true).  

 

l := false  

i = m .. n i:ℕ 

 l := l  x[i]  

 

We must remark that there exists a better programming theorem that can solve the problem 

above than the summation. This is the linear searching. However, if two problems must be 
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solved on the same array (one of them a decision like this and the other a simple summation), 

then it is worth to rally their loops into one loop. This concentration is simple if the structures of 

both loops are corresponded with each other, namely both of them are counted loops. But the 

loop of linear searching is not a counted loop. It is more difficult to rally with a counted loop 

like our decision derived from summation is used. 

When the result of a task is a sequence (especially an array), then it must be often connected 

element by element. The operator concatenation can connect two sequences (:E
*
×E

*
E

*
 

where E
*
 is the set of the finite sequences made of the elements of the set E). This operator is 

associative and its zero element is the empty sequence. The solutions of all these problems can 

be derived based on summation. The simplest problem that can be solved this way is copying. 

3.2. Summation tasks over interval 

The main difference between the first and this version of summation is that the elements which 

are produced, are not in an array but a function can create them.  

A typical usage of this level is the calculation of the factorial. In this task there is no array at 

all, so the first level of the summation is not suitable, only the second one. 

Input :  n : ℕ 

Output :  fact : ℕ 

Precondition  : n=n0 

Postcondition : n=n0  fact =


n

2i

i  

The set H of the programming theorem is the set of natural numbers, now the interval m..n is 

the interval 2..n, the output variable s is fact, the summation operator is the multiplication 

operator over natural numbers and the function f:[m..n]H is the identical mapping. 

 

fact := 1  

i = 2 .. n i:ℕ 

 fact := fact ∙ i  

 

Another situation is hold if we must count the even elements in an array that contains 

integers.  

Input :   x : array([m..n], ℤ) 

Output :  c : ℕ 

Precondition  : x=x0 

Postcondition : x=x0  c = )


n

mi

if (  

The function f of the postcondition maps from interval m..n to ℕ and for all i∊[m..n] 






otherwise0

ixeven1
if

])[(if
)(  
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where even:ℤ𝕃 (𝕃 = {true, false}) recognizes even numbers. Certainly in this algorithm 

instead of the assignment s:=s+f(i), an alternative construct must be written: 

 

s := 0  

i = m .. n i:ℕ 

 even(x[i])  

 s := s + 1 –  

 

Here another famous programming theorem arises: this is the counting. Generally the 

function f maps from E to ℕ, and for all e∊E 






otherwise

)(if
)(

0

icond1
if  

where cond:[m..n]𝕃  is a condition.  

A more general function can be used if the values of f(e) are not just 1 or 0. The type of these 

tasks can also be called as conditional summation. It may be a separate programming theorem. 

The first version can process only one element of the array in one step. The function f of the 

second version allows the process of pairs or triples of elements. For examples, only the second 

version of the summation can be used to solve the problem where the sum of the differences of 

the neighboring pairs of an array is needed. 

Input :  x : array([1..n], ℤ) 

Output :  s : ℕ 

Precondition  : x=x0 

Postcondition : x=x0  s =




n

2i

1-ixix ][][  

Here the set H is the set of integers, the interval m..n is 2..n, and the function f:[2..n]H 

calculates the differences. 

 

s := 0  

i = 2 .. n i:ℕ 

 s := s + ∣x[i]x[i1]∣  

 

We wrote that the task of copying an array into another one can be solved with the first 

version of the summation. But the solution of the problem where it must fill in an array of 

integers with null elements can be only derived from the second version. Namely the problem 

i∊[m..n]: x[i]=0 (where x is an array of integers) can be specified as x = i=1..nm+1 <0>, so it 

can be solved with summation where the summation operator is the concatenation (:ℤ*
× ℤ*

 
ℤ*

). Only the second version allows the solution of the problems whose aim is to create one or 
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several sequences except copying of a sequence. These problems (assortments and separations) 

can be described with the operator concatenation and a function mapping to a sequence. For 

example, let us solve the problem of the selection of the even integers from a given array. 

Input :  x : array([1..n], ℤ)  

Output :  y : array([1..n], ℤ), k : ℤ 

Precondition  : x=x0 

Postcondition : x=x0  y[1..k] = )if
n

1i
(


    

The y[1..k] denotes the first k elements of the array y that is a sequence of integers. (If k is 

less than 1 then y[1..k] is the empty sequence.) The function f of the postcondition maps from 

[1..n] to ℤ* and for all i∊[m..n] 










otherwise

[ ])[(if]
)(

ixeveni
if

x
 

where even:ℤ 𝕃 (𝕃 = {true, false}) recognizes even numbers. Instead of the assignment 

s:=sf(x[i]) an alternative construct must be written: 

 

k := 0  

i = 1 .. n i:ℕ 

 even(x[i])  

 k := k + 1  –  

y[k]:= x[i] 

 

The second version of the summation is worth being used as well if a composite problem 

must be solved, for example, when the sum of the maximum values of the rows of a matrix is 

needed. This problem can be solved with an introduction of an auxiliary array of course when 

firstly the maximum values can be stored into this array and secondly the sum of this array can 

be calculated by the first level of the summation. But a better solution will be got with the 

second level of the summation. In this case the values of the function f:[m..n]H shows the 

maximum values of the rows of the matrix (the rows are numbered from m to n). When the 

second level of the summation evaluates the f(i) it will call a maximum selecting procedure to 

compute this value. This computation of this maximum selecting is embedded in the summation. 

This solution does not need an auxiliary array storing maximum values and its running time is 

also better. 

 Let us look at the following task. There exist n different jobs with their investment costs 

(this is an array) and their expected profits (this is another array). A job can be undertaken if its 

investment cost less than or equal to our current capital. We have got some initial capital and try 

to undertake the jobs in their given order. If our current capital is large enough to undertake the 

next job then our capital will be decreased with the investment cost of the very job but increased 

with its profit. How much is the total investment cost of the jobs that can be undertaken? 
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Input :   invest : array([1..n], ℕ), profit : array([1..n], ℕ), capital : ℕ 

Output :  total : ℕ 

Precondition  : invest=invest0  profit=profit0  capital=capital0 

Postcondition : Precondition  total = )(


n

1i

icost  

This specification is based on two functions: 

cost:[1..n]ℕ 



 


otherwise

)(][if][
)(

0

1-icapitiinvestiinvest
icost  

The capit(i1) denotes the current capital after the first i1 jobs. 

capit:[0..n]ℕ 

capit (0) = capital 



 


otherwise)(

)(][if)][][-)(
)(

1-i

1-ii1-i
i

capit

capitinvestiprofitiinvestcapit
capit  

The solution of this problem can be derived from the summation so that the interval m..n is 

1..n, the set H is ℕ, the function f is equal to the function cost, the summation operator is the 

addition, the variable s is the total and instead of the assignment total:=total+cost(i) an 

alternative construct must be written: 

 

total := 0  

i = 1 .. n i:ℕ 

 invest[i] ≤ capit(i1)  

           total := total+invest[i] –  

 

The function capit was defined recursively. In this case its values can be computed with a 

simple program transformation since the domain of this function fits the interval of the counted 

loop of the summation.  This transformation introduces the variable cap that contains the values 

that are given by the function capit. 

 

total := 0 ; cap := capital  

i = 1 .. n i:ℕ 

 invest[i] ≤ cap  

 total := total+invest[i] ; cap := capinvest[i]+profit[i]   –  
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3.3. Summation tasks on enumerator 

When the elements in a sequential input file or a sequence or another container must be 

processed, the summation of this third level is needed. Let us, for example, select into a 

sequential output file the even integers from a sequential input file including integers!  

A sequential input file is a special finite sequence on which only one operator can be 

executed: this is the reading. This operator can pop the first element out of the sequential input 

file, so the length of the file is decreased.  A sequential output file is also a finite sequence which 

can be initialized as empty sequence (open) and can be extended with a new element (write). 

Input :  x : seqinfile(ℤ)  

Output :  y : seqoutfile(ℤ) 

Precondition  : x=x0 

Postcondition : y = )e
xe

(f

0
  

The e∊x0 symbolizes the enumerator that can iterate all elements of x0. The set E of the 

programming theorem is equal to ℤ, the function f of the postcondition maps from ℤ to ℤ* and 

for all e∊ℤ 










otherwise

)(if
)(

eevene
ef  

where even:ℤ 𝕃 (𝕃 = {true, false}) recognizes even numbers. 

In this solution the enumerator can iterate the elements of the sequential input file. This 

traversal uses the operator st,e,x:read where x is the sequential input file, e is the element that is 

read out from the beginning of the file, st is the status of the reading: its value is norm if the 

reading was successful (x was not empty before reading) otherwise abnorm. The operators 

First() and Next() are equal to this reading, the operator End() gives back the value of expression 

st = abnorm, and the operator Current() gives back the value of e. 

 

y:open  

st,e,x:read e:ℕ, st:{abnorm,norm} 

st = norm  

 even(e)  

 y:write(e) –  

 st,e,x:read  

 

The y:open resets the file y as an empty sequence, the y:write(e) can concatenate the element 

e to the end of y. Instead of the assignment y:write(f(e)) an alternative construct is written: if e is 

even, then y:write(e), otherwise there is nothing to do. 

An enumerator may be very difficult. For example, we can iterate all divisors of a natural 

number [4], or the balances of banking transactions of clients in a month if these transactions are 

sorted by account numbers, or the elements of two sequential files so that they run into one 

sequence if the files are strictly monotone sorted.  
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Based on the last enumeration, the union of the integers of two sequential files can be 

produced [7]: 

Input :  x, y : seqinfile(ℤ)  

Output :  y : seqoutfile(ℤ) 

Precondition  : x=x0  y=y0  x  y 

Postcondition : y = )(ef
yxe
00
}{}{ 

  

The x denotes that the elements of sequential file x are strictly monotone sorted. The {x0} is 

the set of the elements of x0. The e∊{x0}∪{y0} symbolizes the enumerator that can iterate all 

elements of x0 and y0 but every element can occur in this enumeration only once. The summation 

operator is the concatenation.  

Now the set E of the programming theorem is equal to ℤ, the function f of the postcondition 

maps from ℤ to ℤ* and for all e∊ℤ 

















}{}{ha

}{}{ha

}{}{ha

)(

00

00

00

yexee

yexe

yexe

ef  

The operator First() can be substituted with a reading from x (sx,dx,x:read) and a reading 

from y (sy,dy,y:read). In general the operator End() will be true if both status of readings (sx and 

sy) are abnorm but now, because of the concrete task, the End() will be true if sx or sy is 

abnorm. The operator Current() gives back the less value among two values (dx and dy) which 

have been read at last because this is the next value of the enumeration. If this element is a 

common element of x0 and y0, then the function f gives back the sequence containing only this 

element otherwise gives back the empty sequence. The operator Next() reads a new element 

instead of the one that the operator Current() gave back.  

 

z := <> 

sx,dx,x:read; sy,dy,y:read 

dx, dy:ℤ,  

sx, sy:{abnorm,norm} 

sx=norm  sy=norm  

 dx<dy dx>dy dx=dy  

   dz:=dx dz:ℤ 

 dx<dy dx>dy dx=dy  

   z:write(dz)  

 dx<dy dx>dy dx=dy  

 sx,dx,x:read sy,dy,y:read sx,dx,x:read 

sy,dy,y:read 
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The body of the loop in the algorithm above shows three steps: getting the value of 

Current(), writing it into the output file (this is the step s:=s+f(e) of the summation), and the 

operator Next(). After minor modification the final version of this algorithm is the following: 

 

z := <> 

sx,dx,x:read; sy,dy,y:read 

sx=norm  sy=norm 

 dx<dy dx>dy dx=dy 

  z:write(dx) 

sx,dx,x:read sy,dy,y:read sx,dx,x:read 

sy,dy,y:read 

 

4. Conclusions 

It does not need to be proved that the success (and often efficiency) of a solution based on 

derivation depends on the degree of the universality of the programming theorems. It is obvious 

that a good programming theorem should be adequately universal so that the class of the tasks to 

be solved is wide enough. But the theorem must preserve some specialty in order that it can be 

identified in a simple way. 

All versions of summation that were presented in this paper correspond to these principles. 

Usages of the first level of the summation show how variously the summation operator can be 

substituted. The second level adds to this a function that can be implemented in several ways. 

The third level creates the possibility to process an arbitrary sequence of elementary values.  

The versions shown are not different programming theorems but didactic levels of the 

teaching of summation. This distinction helps us to underline the abstract features of the 

summation. Nevertheless the different versions of the summation are not independent. All 

problems that can be solved at some level of the summation can be also derived from other 

higher levels.  

 

parameters first version second version third version 

E E=H ℤ general 

enor(E) enumerator of an 

array([m..n], H) 

enumerator of m..n general 

H general general general 

f:EH identity general general 

+:H×HH general general general 
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The parameters of the different levels of the summation are summarized in the table above. It 

shows which parameter of a certain version of summation has got constraints and which one can 

be substituted arbitrarily. The first version is the most concrete instance of the summation 

because it has got only three parameters but the collection that is enumerated must be an array. 

In the second version four parameters can be found but the collection is always an integer 

interval m..n, and the set E is ℤ. The function f:ℤH is more general than the array array([m..n], 

H) of the first version. The third level is the most general version with five free parameters 

where the enumeration contains the elements of the set E. 

The degree of the universality of the programming theorem is measured in the number of the 

tasks that can be solved based on the programming theorem. We could see that many types of 

tasks can be solved with application of the summation. Not only can many tasks be solved based 

on one of the versions of the summation but a couple of programming theorems are derived from 

the summation. Counting, for example, is a special summation, however every programmer uses 

it as if it were another theorem. In many education course, conditional summation, copying, 

assortment and separation appear as separate programming theorems but all of them are special 

summation. We remark that a special summation is worth being introduced as a new 

programming theorem if its algorithm differs from the algorithm of the general summation.   
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