
 

String processing and XML 

Menyhárt, László 

 menyhart@elte.hu 

ELTE IK 

Abstract. In my opinion the real problems are very important in teaching. In my new idea I 

would like to use XML to teach string processing. In this article I present my approach and 

the worked out curriculum. I tested it in two groups on ELTE, and I did an assessment. It is 

also analyzed here. 

1. Introduction 

The subject of my PhD is XML. I am teaching in the Eötvös Loránd Science University (ELTE) 

where I had some courses about string processing. I could see that the base algorithms are not 

too interesting for the students. That is why I tried to create some new practises. I chose the topic 

from my favourite XML. The SAX parsing is a simple sequential string processing which can be 

good to make presentation the importance of this course. This real problem is solved by a lot of 

implementation and we can create a simplistic application, too. 

I worked out the curriculum which is presented here, and I had chance to test it in two groups 

where the students filled out a survey. 

This article and its appendixes are available on [1] URL. 

2. Curriculum 

I worked out a new matter to a lesson with practises based on my idea. Now I present the lesson 

plan, and the handout which is good for the teacher and the students too. 

Lesson plan 

 Introduction (Booting and filling the first part of the survey) 6 minutes 

 XML review 8 minutes 

o HTML. What is difference in XML? What does it do? 

o String file:readable, processing able, … 

o Well-formed 

 Now we do another restriction (easier to handle): “Very well”-formed 

 Processing XML 8 minutes 

o DOM 

 tree data-structure 



Menyhárt, László 

 2 

o SAX (more details) 

 startDocument, endElement, startElement, endElement, findCharacters 

 others 

 Reviewing about SAX_template 8 minutes 

o Downloading and unzipping 

o Running SAX_example 

o Reviewing surface, types, variables and functions of SAX_template 

Now it is the tierce of the lesson. 

 1. practise 11 minutes 

o Implementation of SAX parsing 

 Designing of “event-functions”: How can we create a table? 

 Coding into the SAX_template 

 2. practise 9 minutes 

o Implementation of getAttributeValue 

 Theorem of Linear searching 

 Coding into the SAX_template 

 3. a) practise 10 minutes 

o Implementation of parseXML 

 Talking about algorithms 

Now it is the second tierce of the lesson. 

 4. a) practises (6) 12 minutes 

o Implementation of co-procedures 

 Talking about algorithms 

 4. b) practises (5) 10 minutes 

o Implementation of co-procedures 

 Coding into the SAX_template 

 3. b) practise 6 minutes 

o Implementation of parseXML 

 Coding into the SAX_template 

 Fill the second part of the survey 2 minutes 

 Homework 

o 0. Please, end the coding 

o 1. Rewrite SAX_handler to generate list instead of table. 

o 2. Implement readCDATASection 

o 3. How can we generalize the parseXML procedure? (not very-well formed!) 

Handout 

Today we introduce to XML, the SAX processing and we create an own implementation in a 

template application. 



String processing and XML 

 3 

XML 

XML is an abbreviation. It comes from eXtensible Markup Language. It stores the data in a 

text file. It contains tags, attributes and the data. Its structure is hierarchical. It is built from 1996 

based on SGML. The first recommendation was published in 1998. The version 1.0 is used. ([2]) 

Goals at creations 

 Straightforwardly usable over the Internet 

 Support by wide variety of applications 

 Easy managing 

 Human-legible and reasonably clear 

 Easy to create 

 Free to use 

Syntax 

Example 

<?xml version="1.0"?> 

<!-- This is a comment --> 

<example> 

  <teacher executive="true" filled="false"/> 

  <teacher executive="true"> 

    <etrid>ZSLABCD</etrid> 

    <name>Zsako, Laszlo</name> 

    <email>zsako@ludens.elte.hu</email> 

  </teacher> 

  <teacher> 

    <etrid>MELEAET</etrid> 

    <name>Menyhart, Laszlo</name> 

    <email>menyhart@inf.elte.hu</email> 

  </teacher> 

</example> 

The first line contains the declaration of XML which is contains the used version and maybe 

the character encoding, but it is missing now. 

The second line is a comment. 

The third line is the root, the tag “<example>" can be found. 

It is followed by an empty element “<teacher>” where there are two attributes too. 

In the next line an opening tag can be seen with an attribute. 

The next three lines nodes stand with string content (“etrid”, “name”, “email”). 

There is the closing tag for “teacher” in the ninth line. 

A new complete “teacher” node goes after it. 

Finally the document is closed by the root’s closing tag. 

Opening tags 

The opening tag stands the name of element and the attributes if there are some. 



Menyhárt, László 

 4 

Closing tags  

Against of HTML closing tags are required here. There cannot be opening tags without it. 

The name of closing tags must correspond with the name of opening tags in view of 

characters. Case-sensitivity is important. 

The descent is very important, too. The order of closing tags are not important in HTML but 

the build of XML is based on descending. So the second line is the correct. 

<b><i>Text in bold and italic style. WRONG!</b></i> 
<b><i>Text in bold and italic style. CORRECT!</i></b> 

One root 

Every XML document contains one (and only one) root element. It can have child elements 

which can have descendant, too. 
<root> 

 <child> 

  <descendant>...</descendant> 

 </child> 

</root> 

Attributes  

Attributes consist of name-value pairs. Between the attributes must be a space. Values are in 

brackets. So only the second example is correct. 
<element id=0> - WRONG 

<element id="0"> - CORRECT 

Comments 

Syntax of comment is the same as in HTML. 
<!-- This is a comment. --> 

Well-formed document 

An XML document is well-formed if it corresponds to these rules. 

Valid document 

An XML document is valid if it is well-formed and its structure is defined and observed. We 

can define the rules of the structure by two possibilities. 

DTD 

Document Type Definition. The structure of XML document is defined by DTD. It is a 

special definition, which can be contained in the XML as an inline definition in a <!DOCTYPE 

…> node declaration or XML can refer to an outer file. It contains only the names of elements 

and attributes; location, count and order of occurrence. 



String processing and XML 

 5 

XSD 

XML Schema Definition (XSD) is more than DTD. It can define the structure of XML 

document and the types of data by XML format. It specifies the elements, attributes, descent of 

XML document and it can define new types, enumerations, etc. It can define more information 

than DTD. It supports types and namespaces. So it is usable for testing syntax and semantics, 

too. 

Special characters 

There are characters which have special feature for helping the parsing. For example “<” 

character means the beginning of the tags. That is why “&lt;” is required in the data instead of it. 

There are more characters that must be replaced by fore-defined ENTITY strings. The ENTITY 

starts with the “&” character and ends with the “;”. 

Entity Replaced 

character 

Description 

&lt; < left angle bracket (less then) 

&gt; > right angle bracket (greater than) 

&amp; & ampersand 

&apos; ’ apostrophe 

&quot; ” quotation mark 

&#337; ő usable is the character codes, too 

Table 1: Entities 

CDATA section 

Sometimes data must contain special characters or we do not want to replace the characters. 

for example storing the name of “K&H Bank”. We are able to indicate these sections, which is 

unnecessary to parse. There are not other elements. We can create a CDATA section (character 

data) where any data can appear except one string, the end-marker three characters. 
<![CDATA[ 

Previous line contains the start characters. Any not parsed string can be coming here for 

example “<” and “&” characters. The end characters are these: 
]]> 

Tag and element or node 

The other denomination of element is (in a tree). It is coming from the DOM (see later). 

An element is build by an opening tag, a closing tag and the content. The opening tag consist 

of a “<” (left angle bracket) character, the name of element, the possible list of attributes (in 

name=”value” format) and “>” (right angle bracket) character. The closing tag consist of a 

“<” (left angle bracket) and a “/” (per) characters, the name of element and “>” (right angle 

bracket) character. The CONTENT can be text or other descent elements. Sometimes the text 

and other elements come together. It is possible in mixed element, but it is not liked, because the 

parsing will be more difficult. 
<tagname attribute=”value”>CONTENT</tagname> 



Menyhárt, László 

 6 

If the element does not have content (<tagname></tagname>) it can be written briefly. 

The opening tag contains a “/” (per) character just before the “>” (right angle bracket) character 

(<tagname/>). Of course attributes can appear here, too. 

“Very well”-formed 

Now we define a new, the “very-well”-formed idiom. If the documents are very-well formed 

the parsing will be easier. We would not like to regard the needless spaces, tabulators, and so on. 

The document must be well-formed and must have some other property: 

1. Let there be just one space between the attributes 

2. There are not mixed elements. 

3. In the opening tag of an empty element the “/” (per) character must follow immediately 

the last attribute. 

4. In the closing tag “/” (per) character follows immediately the “<” (left angle bracket) 

character. 

XML processing 

DOM 

Document Object Model considers the XML document as a tree structure. ([3]) The whole 

document is loaded into the memory and it is stored in a tree data-structure. Reaching a node 

more times and programming is faster because the tree is in the memory. But it requires a lot of 

memory. 

SAX 

Simple API for XML looks the XML document as a sequential text file. ([4]) So if you reach 

an element and you need a previous one, you must read the file again from the beginning. In this 

case the work is slower. It does not require much memory because it reads only an element in 

one time. Almost every programming language has libraries for implementing it. Today we 

implement it! The solution is creating a general parsing processor which calls back the regular 

own functions to manage the data. It can be achieved in more format: over interfaces, with object 

oriented abstract class, events, .... Now we use the easiest one with overwriting the functions in 

an include file. 

It defines the following events, basic methods: 



String processing and XML 

 7 

Event When Parameters 

startDocument It runs on the beginning of the 

document 

none 

endDocument It runs on the end of the document none 

startElement It runs at the reading of opening tag name of element , list of 

attribute, [namespace] 

endElement It runs at the reading of closing tag element neve, [namespace] 

characters It runs at reading of character data Text (read characters) 

Table 2: Basic functions of SAX 

There are some other, but we do not deal with them: 

- processingInstruction 

- ignorableWhitespaces 

- skippedEntity 

Moreover we can create or overwrite own event functions: for example to handle comments. 

SAX_template 

Download 

http://xml.inf.elte.hu/2009_10_2/szovegfeldolgozas_xml/SAX_template.zip 

http://xml.inf.elte.hu/ 

 Education / 2009/2010 Spring semester / String processing – XML 

(Oktatás / 2009/2010 Tavaszi félév / Szövegfeldolgozás – XML) 

 SAX_template.zip 

Files 

Name of file Description 

unit1.pas Mainprogram to the surface. Do not modify! 

saxunit.pas It contains the general parsing procedure and the co-functions. 

SAX_handler.inc It contains the event-functions (see 5 above) 

Table 3: Important files 

 

http://xml.inf.elte.hu/2009_10_2/szovegfeldolgozas_xml/SAX_template.zip
http://xml.inf.elte.hu/


Menyhárt, László 

 8 

Surface 

 

Figure 1: Surface of the template application 

 

Types 

We defined a new type for storing the name and value of attribute. 
TAttribute=Record 

  name:String 

  value: String 

end 

An element can have more attributes, so we store them in an array. 
TAttributeArray=Array(1..100:TAttribute) 

We manage the count to use it as a list (almost). 
TAttributeList= Record 

  count:integer; 

  item:TAttributeArray; 

end 

Variables 

The main variables in the SAX class are the generated text, the log and the text file. 
parsedStr,log:String; 

f_xml:TextFile; 

Opens a file and starts the 

parsing 

Choose a location for file and 

save the content into it. Press to exit 

Place of results 
Place of log 



String processing and XML 

 9 

Co-variables 

We need some other variables to read forward a character or to collect the characters. 
ch:Character; 

s1,s:String; 

We manage the name and value of attribute detached and in a list, too. 
ename,value: String; 

att_list:TAttributeList; 

We must find the position of “=” (equality) character. 
p: integer; 

Loop variable. 
i: integer; 

Notify the end of the tag or node. 
endoftag,endofnode:Boolean; 

Procedures and functions 

We need getter/setter functions to reach the main variables. 
setString(fs: String); 

setLog(fs: String); 

getString: String; 

getLog: String; 

We want to append string to the main variables. 
addString(fs: String); 

addLog(fs: String); 

The next procedure makes the general XML processing. 
parseXML(fname: String); 

The previous procedure needs the following co-functions. 
readForwardACharacter: String; 

readToLess: String; 

readToGreater: String; 

readAWord(endoftag: Boolean;endofnode: Boolean): String; 

readCDATASection: String; 

readAttributesTo(att_list:TAttributeList; endofnode: Boolean); 

The next 5 procedure will be overwritten as event-functions. These are in SAX_handler.inc 

file. 
startDocument; 

endDocument; 

startElement(ename: String;attr_list:TAttributeList); 

endElement(ename: String); 

findCharacters(value: String); 

The following is a co-function for parsing the attributes in the opening tag. 
getAttributeValue(attr_list:TAttributeList;aname: String): 

String; 



Menyhárt, László 

 10 

Algorithms 

Implementation of SAX processing (SAX_handler.inc) 

startElement(ename:String;attr_list:TAttributeList) 

It runs at the reading of opening tag. 
switch 

  in case of ename='example' 

    //Beginning of table 

    addString(' <table border="1" cellpadding="0" 

cellspacing="0">'); 

    addString('  <tr><td>ETR id</td><td>Name</td><td>E-

mail</td></tr>'); 

  in case of ename='teacher' 

    //Beginning of the row 

    line:='  <tr'; 

    //if there is an attribute, we read the value of 

“executive” 

    if attr_list.count>0 then 

      value:=getAttributeValue(attr_list,'executive'); 

      //If the value is “true”, the class of style will be 

“gray” and it will appear with gray background colour. 

      if value='true' then 

        line:=line+' class="gray"'; 

      end 

    end; 

    line:=line+'>'; 

    addString(line); 

  in case of ((ename='etrid') or (ename='name') or 

(ename='email')) 

    addString('   <td>'); 

end; 

endElement(ename: String) 

It runs at the reading of closing tag. 
switch 

  in case of ename='example' 

    //end of the table 

    addString(' </table>'); 

  in case of ename='teacher' 

    //end of the row 

    addString('  </tr>'); 

  in case of ((ename='etrid') or (ename='name') or 

(ename='email')) 

    addString('   </td>'); 

end; 



String processing and XML 

 11 

Implementation of getAttributeValue (saxunit.pas) 

getAttributeValue(attr_list:TAttributeList;aname: String): String 

We use linear searching to find the value to the “aname” in the list of attribute. 
value:=''; 

i:=1; 

while ((i<=attr_list.count) and 

(attr_list.item[i].name<>aname)) 

  i:=i+1; 

end; 

if (i<=attr_list.count) then 

  value:=attr_list.item[i].value; 

end; 

getAttributeValue:=value; 

Implementation of parseXML (saxunit.pas) 

parseXML(fname: String); 

This is the general parsing procedure which reads sequentially the XML file. The name of 

file is the parameter. It starts with opening the file, calling the startDocument procedure and ends 

with closing the file and calling the endDocument procedure. At first we find – read the 

characters to – the beginning of the first tag ( the first “<” (left angle bracket) character). The 

processing starts here and it repeats to the end of the file. It reads the first character by which it 

makes a junction and process the opening tag. Then it reads the data till the next “<” (left angle 

bracket) character. There are four (4) possibilities at the junction. 

1. The “/” (per) character means the closing tag. It must read the name and call the 

endElement procedure. 

2. The “?” (question-mark) character means processing instruction. It must read to the “>” 

(right angle bracket) character but now we do not handle it. 

3. The “!” (exclamation mark) character means special element. In this time it must read 

the next character, too, and make a junction again with four (4) possibilities. 

a. The “-“ (hyphen) character shows comment. It reads to the “>” (right angle 

bracket) character but now we do not handle it as in the second case. 

b. The “D” character means document type definition. It reads to the “>” (right 

angle bracket) character again and we do not handle it as before. 

c. The “[“ (opening square bracket) character begins the CDATA section. It is 

closed by “]]>” (closing square bracket, closing square bracket, right angle 

bracket) characters. It must read the content of section and process it as 

characters. 

d. Otherwise it is unknown, so it must read to the “>” (right angle bracket) 

character but now we do not handle it as before. 

4. Other character means opening tag. It must read the name of tag where the first 

character has already been read before. And it must read the attributes if the tag has not 

been ended yet (“endoftag”). If the tag contains a “/” (per) character in the end it means 

it is the closing tag, too. It is an empty element, and endElement must be called. 
//Clear the result string before the new processing. 



Menyhárt, László 

 12 

setString(''); 

OpenFile(f_xml,fname); 

//start of the document 

startDocument; 

//Read content of file to the first ”<” (left angle bracket) 

character. 

s:=readToLess; 

while (not end_of_file(f_xml)) 

  s:=readForwardACharacter; 

  switch 

    in case of s='/' 

      //end of element 

      ename:=readAWord(endoftag,endofnode); 

      endElement(ename); 

    in case of s='?' 

      //Processing instruction - skip 

      s:=readToGreater; 

    in case of s='!' 

      //Special element 

      s:=readForwardACharacter; 

      switch 

        in case of s='-' 

          //Comment (<!--...-->)' 

          s:=readToGreater; 

        in case of s='D' 

          //DTD (<!DOCTYPE...>)' 

          s:=readToGreater; 

        in case of s='[' 

          //CDATA (<![CDATA[...]]>); 

          s:=readCDATASection; 

          if s<>'' then 

            findCharacters(s); 

          end 

        otherwise 

          //Unknown special element 

          s:=readToGreater; 

      end; 

    otherwise 

      //start of element, s contains the first letter of the 

name! 

      ename:=readAWord(endoftag,endofnode); 

      ename:=s+ename; 

      att_list.count:=0; 

      if not endoftag then 

        readAttributesTo(att_list,endofnode); 

      end 

      startElement(ename,att_list); 

      //If the opening tag contains a “/” (per) character at 

the end it is an empty element and it must be closed 

      if endofnode then 

        //End of element 

        endElement(ename); 

      end 



String processing and XML 

 13 

  end; 

  //Read the characters to the next (opening or closing) tag 

which starts with “<” (left angle bracket) character. The trim 

function cut the needless characters from the beginning and 

the end of it. 

  s:=trim(readToLess); 

  if s<>'' then 

    findCharacters(s); 

  end; 

end; 

//End of document 

endDocument; 

CloseFile(f_xml); 

Implementation of co-functions (saxunit.pas) 

readForwardACharacter: String; 

It reads a character (reading forward) and returns with it as a string. 
KaraktertOlvas(f_xml,ch); 

readForwardACharacter:=ch; 

readToLess: String; 

It reads a character and append to the collected string while it does not find “<” (left angle 

bracket) character. The last read character is skipped because it is the “<” (left angle bracket) 

character. 
s:=''; 

s1:=readForwardACharacter; 

while ((not end_of_file(f_xml)) and (s1<>'<')) 

  s:=s+s1; 

  s1:=readForwardACharacter; 

end; 

readToLess:=s; 

readToGreater: String; 

It reads a character and append to the collected string while it does not find “>” (right angle 

bracket) character. The last read character is skipped because it is the “>” (right angle bracket) 

character. 
s:=''; 

s1:=readForwardACharacter; 

while ((not end_of_file(f_xml)) and (s1<>'>')) 

  s:=s+s1; 

  s1:=readForwardACharacter; 

end; 

readToGreater:=s; 

readAWord(var endoftag: Boolean;var endofnode: Boolean): String; 



Menyhárt, László 

 14 

It reads a character and append to the collected string while it does not find “>” (right angle 

bracket), “/” (per) or “ “ (space) character. The last read character must be listened because it 

shows the end of the tag or node. It is dropped because it is the “>” (right angle bracket) 

character. This algorithm is based on the SzóOlvas ([5]) it is extended with the two markers 

parameter. 
endofnode:=FALSE; 

s:=''; 

s1:=readForwardACharacter; 

while ((not end_of_file(f_xml)) and (s1<>'>') and (s1<>' ') 

and (s1<>'/')) 

    s:=s+s1; 

    s1:=readForwardACharacter; 

end; 

if s1='/' then 

    endofnode:=true; 

    s1:=readToGreater; 

    endoftag:=true; 

else 

  endoftag:=(s1='>'); 

end; 

readAWord:=s; 

readCDATASection: String; 

It resembles to the previous readAWord but it must read forward 3 characters and listens to 

the end-mark “]]>”. 
Homework! 

readAttributesTo(var att_list:TAttributeList;var endofnode: Boolean); 

It reads words with using a post-test loop. A word is an attribute which is cut to name and 

value by the “=” (character) and these are stored in the list of attributes. It transmits the value of 

“endofnode” parameter. 
do 

//Reading a word. 

  s:=readAWorld(endoftag,endofnode); 

//Increment the count of the attributes 

  att_list.count:=att_list.count+1; 

//Look for the position of “=” (equality) character 

  p:=Pos('=',s); 

//Copy the name of attribute from the string. Do not copy the 

“=” (equality) character. 

  att_list.item[att_list.count].name:=CopyAPartOfString(s,1,p-

1); 

//Copy the value of attribute from the string. Do not copy the 

“”” (quote) characters. 

  att_list.item[att_list.count].value:=CopyAPartOfString(s, 

p+2, length(s)-p-2); 

while not (end_of_file(f_xml) or endoftag); 



String processing and XML 

 15 

3. Survey and opinions 

I conducted two lessons on ELTE. They are in minor BsC informatics teacher course. The 

name of the lesson is “Programozási Alapismeretek (M1,M2)” ([6]). These two lessons were on 

4
th

 March 2010. between 10:15 and 11:45 and between 12:15 and 13:45. 

The first group did not get the handout ([7]) but I gave it to the second group. Independently 

from this I think the second group was more active and more inquisitive. The first group was not 

able to answer the question: “Which tags must be written to define a table? (table, tr, td)”. They 

knowledge of HTML is too high (3) or they were not so active and they hated the unknown, non-

regular teacher. 

This matter is enough for two (2) lessons. 

On these lessons I did not have time to code the algorithms. In the first group we could 

talk about the algorithms without implementation (4.b); 3.b)). In the second group 2-3 people’s 

teams were coding the functions but we did not able to build together. Every team made one 

function and they did not see the other solutions. 

It is confirmed by our measuring, too. My colleagues and I recorded the minutes at the 

checkpoints in the lesson plan. The next table shows the proposed and the real time in the first 

part of the lesson: 

Title Proposed time 

(minutes) 

Real time 

(minutes) 

Introduction 6 5 

XML review 8 15 

Processing XML 8 5 

Reviewing about SAX_template 8 15 

1. practise 11 20 

2. practise 9 20 

Total 50 80 

Table 4: Elapsed times on first part of the lesson 

The leisurely tempo wants to cut here the lesson. 

Regarding to another idea it can be change the order. On the first coding lesson students 

implement the functions based on the given algorithms and only on the second lesson they can 

understand the motive (XML processing). 

So the next two lesson plans can be applied: 



Menyhárt, László 

 16 

Title Time (minutes) 

Introduction 5 

XML review 15 

Processing XML 10 

Reviewing about 

SAX_template 

15 

1. practise 25 

2. practise 20 

  

Introduction 5 

3.a) 20 

4.a) 20 

4.b) 20 

3.b) 25 

Table 5 a): Lessons plan A 
 

Title Time (minutes) 

Introduction 5 

3.a) 20 

4.a) 20 

4.b) 20 

3.b) 25 

  

Introduction 5 

XML review 15 

Processing XML 10 

Reviewing about 

SAX_template 

15 

1. practise 25 

2. practise 20 

Table 5 b): Lessons plan B 
 

 

I asked the students to fill out the following survey. 

Classify, your knowledge … 

or, how do you like … 

1 

insufficient 

not … 

2 

sufficient 

3 

medium 

pass for 

4 

good 

5 

excelent 

very … 

Questions to the beginning of the lesson: 

Your mark in “Webfejlesztés 1” 

(Leave it blank if you do not have) 

     

Knowledge of HTML (according 

to you) 

     

Knowledge of XML before the 

lesson 

     

knowledge of XML parsing before 

the lesson 

     

Knowledge of Pascal 

programming language 

     

Knowledge of Lazarus IDE      

Questions to the end of the lesson: 

Your attention on the lesson      

Your knowledge in this theme at 

the end of the lesson. (How do you 

feel?) 

     

… topic of the lesson      

… order of the lesson      



String processing and XML 

 17 

… trained of the teacher      

… presentation of the teacher      

Rate the template application as 

appearance 

     

Rate the template application as 

useable 

     

Rate the template application as 

implementation 

     

…1. SAX parsing (create “event-

functions”) 

     

…2.implementation of 

getAttributeValue 

(linear searching theorem) 

     

…3.implementation of parseXML 

(complex task, requiring more 

thinking / thought-provoking) 

     

…4.implementation of co-

functions  

(easier, “more precisely” task) 

     

What do you like on the lesson?  

What do NOT you like on the 

lesson? 

 

Table 6: The survey 

The first part of the survey was filled out on the beginning of the lesson. The second part was 

filled out on the end of the lesson. 

I attached the result, the 5_results_hu.xlsx file into the [1]. 

I present here my conclusions only: 

 Their knowledge about HTML is medium (3) 

 They have not XML knowledge (1.175) 

 Pascal programming language is known moderately (2.8) 

 Lazarus IDE knowledge is low (1.85) 

 Their attention was arrested well (3.8) 

 They learned something (2.5) 

 The lesson 

o The topic is good (4,05) 

o The order of the lesson is good (3.9) 

o My preparedness was good (4.65) 

o My presentation was good (4.15) 



Menyhárt, László 

 18 

o These questions were rated well by the second group (0.7). They could 

work from the handout. Maybe it was better. 

 The template application is good (4.01). It liked more in the second group, too. 

 The awarding of SAX parsing was better with 0.5 in the second group (3.3). 

 The implementation of getAttributeValue was medium (3.05). They did not know 

the algorithm of linear searching. It was only coding exercise. 

 The last two exercises were not so good (3). We could only talking about these but 

we did not have time to try them. 

 So medium HTML knowledge is enough for understanding XML and do 

transformation to HTML. 

I regret but I forgot to make a vote about the next question: “What do you think this course 

let be on the next semester or not? (Y/N)” 

4. Conclusion 

In this paper I presented a new idea for teaching string processing, a lesson plan is available 

and I analysed the survey that was filled in the two test-lessons. I compressed and uploaded the 

presentation, the lesson plan, the survey, the handout, the results and the applications to the URL 

[1]. 

The curriculum is too much for 90 minutes, but it is complete in this format. That is why I 

suggest 2 lessons with 90-90 minutes. The reception was good. So it can require complementary 

work in the future. 

Referencies 

1. Menyhárt, László: String Processing and XML, INFODIDACT 2010, Szombathely (2010) 

http://xml.inf.elte.hu/konferencia/2010/INFODIDACT/StringProcessing&XML.zip 

2. Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C (2008) 

http://www.w3.org/TR/xml/ 

3. Document Object Model (DOM) Level 1 Specification, W3C (1998) 

http://www.w3.org/TR/REC-DOM-Level-1/ 

4. Simple API for XML (2004) 

http://www.saxproject.org/ 

5. Pap, Gáborné; Szlávi, Péter; Zsakó, László: mikrológia 14, Módszeres programozás: 

Szövegfeldolgozás (1995) 4. kiadás 

6. Programozási alapismeretek (M1,M2) (2010) 

http://progalapm.elte.hu 

http://xml.inf.elte.hu/konferencia/2010/INFODIDACT/StringProcessing&XML.zip
http://www.w3.org/TR/xml/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.saxproject.org/
http://progalapm.elte.hu/

