

Algorithmics of the Knapsack Type Tasks

Pătcaş Csaba

 patcas.csaba@gmail.com

BBTE

Abstract. We propose a new kind of approach of the teaching of knapsack type problems

in the classroom. We will remind you the context of the general knapsack-task and we will

classify it. We will focus on the solving of the discrete variant, and we will determine the

complexity of the algorithms, looking for different optimiziation possibilities. All these

issues are presented in a useful way for highschool teachers, who are preparing students in

order to participate in different programming contests.

1. General task

We will present - in a general manner - the text of the one-dimensional knapsack task:

Let us consider a knapsack of volume V and n items, with volumes vi and costs ci,

(i = 1, 2, …, n). Determine the subset of the given items, which has the total volume either

smaller or equal to the knapsack’s capacity and for which the sum of the costs is optimal.

Before going to the different variants in which the given task might be encountered (in giving

an explicit form to the task's general terms), let us see how these variants could be classified.

From a methodological point of view (while teaching) it is also recommended to make the stu-

dents aware from the beginning that they must pay special attention to the differences that might

appear - most of them hidden, wrapped in a story - in various task texts.

2. Classifying

An ideal case would be that this classifying, the „discovery” of the differences between the prob-

lem statements to be sort out together with the students, while studying more text variants. Ob-

viously, from the point of view of task type, we could add texts that only seem different, and yet

they are part of the same category. The classifying of this task's variants is realized on the follow-

ing three criteria: from the point of view of continuity, from the point of view of the number of

items and from the point of view of the optimal filling of the knapsack.

mailto:patcas.csaba@gmail.com

Pătcaş Csaba

 2

From the continuity point of view of the knapsack task, this can be given in both the discrete

and the continuous variant.

a) the discrete variant: we have to select only uncut items.

b) the continuous (fractional) variant: in this case we are not forced to select an

item as a whole, because the items can be cut. In this case, if an item is cut, we gain

a cost proportional to the selected volume. As known, it is usually solved with the

help of a greedy type algorithm.

From the point of view of the number of items we have three cases:

a) the unbounded variant: we have an infinite number of pieces corresponding to

each item type.

b) the bounded variant: each i item must be used at least li times and at most ui times

(i = 1, 2, …, n).

c) the binary variant (0-1): we have a special case of the bounded task in which li=0

and ui=1, where from each item we only have one piece. The naming (0-1) of the

binary variant comes from the fact that an item can appear in the knapsack once or

it can not appear at all.

If the teacher is lucky enough the students will notice by themselves the following:

 In the bounded variant it does not make sense for the values li and ui (i = 1, 2, …, n)

to be higher than [V/vi]. Thus, the unbounded variant can be changed into the

bounded variant, by setting the inferior limits li=0 and the superior limits ui=[V/vi].

 We can simplify the bounded variant, by setting the inferior limits li=0, a case in

which the superior limits ui will be changed in ui-li (i = 1, 2, …, n). In this case the

value V has to be fixed on V – (l1∙v1+l2∙v2 + …+ ln∙vn). In this way we will lose the

inferior limits.

 The bounded variant can be changed in the binary one. We will consider the text of

the binary variant, saying that from each type of item we have ui (i = 1, 2, …, n)

pieces.

The teacher will emphasize these extremely important remarks, because of the fact

that all the discrete variants of the task can be reduced to the binary variant. Out of

this reason, we will further focus on the solving of this variant, only.

From the point of view of the optimal filling of the knapsack, we have four cases:

a) Case (max, ≤): in such tasks we are interested in the item configuration, for which

the costs’ sum is maximal and the knapsack does not necessarily have to be full.

b) Case (max, =): similar to the precedent case, differing in that we are interested only

in the solutions for which the sum of the volumes of the selected items is equal to

the knapsack’s volume.

Algorithmics of Knapsack Type Tasks

 3

c) Case (min, ≤): here the sum of the costs must be minimal, and the knapsack does

not have to be full.

d) Case (min, =): the sum of the volumes of the items must be equal to the knapsack’s

volume and the costs’ sum must be minimal.

The teacher will present a lot of tasks and will ask the students to decide which kind type they

are.

3. The coins task

As we already mentioned, the discrete variant can be solved by using the dynamic programming

method. We will start from a simplified variant of the one-dimensional task.

Let us consider n coins, where the ith has the vi (i= 1, 2, …, n) value. The vi values are strictly

positive integer numbers. Determine if it is possible or not the exact payment of the V sum, using

these coins!

We used on purpose the same notations as in the first text, the one of the knapsack task, in

order to facilitate the noticing of the likeness of the two tasks. We hope, that the students will

notice, that the simplifying consists in the elimination of each item’s cost, so there is no need to

optimize another value, we must just answer the question. So we have the case (, =), where

indicates the fact that we do not have an optimum function. (The classical variant of the task asks

for the sum to be obtained by using a minimal number of coins. Thus a cost that has to be

minimized is introduced, and in this case, this will be ci = 1, i = 1, 2, …, n).

The teacher will remark that, in the case in which the values vi are real numbers, the coins

task is NP-complete. Actually, there are no polynomial algorithms for any of the discrete variants

of the knapsack task. The solutions using the dynamic programming method have

pseudopolynomial complexity, because these algorithms have an (V n) complexity. That means

that the execution time does not only depend on the number n of the items, but also on the

knapsack’s volume V. The complexity is not polynomial, because it is possible for the value V to

exponentially increase as compared to the value n. So, if the value V is very high, we have an

inappropriate complexity. Even if the value V is low, we can have a big number of items, so the

execution time can increase in this case, too.

So we have to decide whether or not the given sum payment is possible. As we mentioned

above, in order to answer to this question, we will use the dynamic programming method. We

will build a matrix a (a helping data structure) of (n+1) (V+1) dimensions:

aij = true, if sum j can be obtained using the first i type of coins

 false, otherwise

Pătcaş Csaba

 4

i = 0, 1, ..., n, j = 0, 1, ..., V. Obviously, for i = 0, the only element with true value will be a00

(with zero coins you can only get the sum zero). The other values can be thus determined:

aij = true, if ai-1,j-vi = true

 ai-1,j, otherwise

After this analysis and the preparation of the needed formulas, the solving algorithm can be

presented by a student. A negative aspect of this solution is the fact that it utilizes a space

memory of (V n). But, skillfully, a teacher could lead the analyzes of the solving so that a

student observes that for building a line in the matrix, only the precedent one is used. Thus, it

seems natural the “lucky” idea of not keeping in memory the whole matrix of (n+1) (V+1)

dimensions, but to memorize just two vectors, one in which the actual line is kept and the other

for the precedent one. Each time we start the determination of a new line of the matrix, we will

overwrite the vector of the precedent line with the vector of the actual one, so that the

determination of a new line will be possible.

Further on, we will present the most elegant method, which uses only one vector and which is

based on the following remark: in a certain sum we can have the same coin many times, only if

first we already got a smaller sum by using at least once the respective coin. Thus we come to the

idea of calculating the sum in decreasing order of the values (we will refer to this as the 1
st

variant).

4. Optimization possibilities

Another optimizing possibility is memorizing the highest and the lowest value achieved at a

certain point, and parsing the values only in this interval. But when do these values modify? One

can notice that in the case of the coins’ task the minimum always remains zero, because the coins

have positive values. Thus, for our task we do not even need this minimum. The maximum will

always be the sum of the first i elements, if this sum does not exceed the V value.

Because the b vector contains Boolean values, we can utilize bit processing. Thus, we will

reduce the dimension of the needed memory from V bytes to [V/8] bytes. In the second variant

we implement this idea, by using two subprograms to read/write a certain bit.

This method has one more advantage because of the fact that the vector from the ith step can

be obtained by shifting to right the vector from the (i 1)th step with vi positions (bits) and making

a logical disjunction between the initial vector and the vector got after the shift. More exactly, we

will utilize a formula like this: ai=ai 1 or (ai 1 shr vi). Using this property, we do not have to

calculate the a vector bit by bit; we can utilize bigger steps (byte by byte, word by word etc.)

significantly improving the program’s running speed. This is due to the fact that bit operations

are very fast (3
rd

 variant).

Let us see how these three variants perform in practice. Does the improved memory usage re-

sult in a worse running time? We measured the performance of the variants using a randomly

generated test case (with n=5000 and V=50000), on two sets of implementations: using an old

16-bit programming language (Borland Pascal) and a modern 32-bit programming language

(Visual C++). The following tables contain the results.

Algorithmics of Knapsack Type Tasks

 5

Borland Pascal

Variant Memory usage Running time

1 60000 bytes 2,5s

2 16250 bytes 4s

3 16250 bytes 0,5s

Visual C++ (Release mode)

Variant Memory usage Running time

1 60000 bytes 0,2s

2 16250 bytes 0,4s

3 16250 bytes 0,05s

In conclusion the programming language used, didn’t affect the results. The third variant was

the fastest and it also used the least memory.

5. The reconstruction of the solution

In the coins’ task text, it was asked to decide only if the sum can be paid or not. We might need

also the method through which we got to a certain sum, not just the checking of the fact that this

can be obtained. The determination of paying modalities can be either easily or with much

difficulty realized, depending on the size of input data and the available memory.

The first idea would be to memorize in a matrix called ind the highest index of a coin that is

part of that sum, for each obtained sum. This method provides the correct result only in the case

of utilizing matrices.

In all of the other versions we cannot reconstruct the solution using this method for all cases.

As a counter-example let us consider n=3, V=7 and v=(5,2,3). Using the first coin, we can pay

the sums 0 and 5. Using the first two coins, we can get 0, 2, 5 and 7. But in the next iteration we

have a problem. (Here we will remind the students, that we are discussing the binary variant of

the knapsack problem.) Using the first three coins, we will pay the sum 5 with the second and the

third coin, so when trying to pay the sum 7 we will use the second coin two times which is not

allowed (7 = 2 + 3 + 2 instead of 7 = 2 + 5). This problem arises with algorithms which are

allowed to overwrite previously achieved values.

Even if we do not allow the program to overwrite values that have been achieved, the

solution won’t work in the classical variant of the problem, when we must pay the sum with

minimum number of coins. Let us consider the following example n=5, V=23 and v=(19,7,7,7,2).

We observe that the sum 21 can be achieved minimally with two coins (19 + 2). In the same time

the sum 23 cannot be obtained by the algorithm, which is wrong, because 23 = 7 + 7 + 7 + 2.

Pătcaş Csaba

 6

In conclusion, the correct solution uses two matrices that contain n+1 lines and V+1

columns, the a matrix, and the ind matrix with the meanings described above. So the solution

needs an (n V) memory space, while the execution time is also (n V) (1
st
 variant).

If the memory limits are harder, we could improve this method by memorizing the matrix

only from k to k lines and by running of the algorithm “on parts” of k lines. More exactly, after

we have determined the [n/k] lines, we reconstruct the solution starting from the last memorized

line (the ([n/k])th) and constructing the next k lines. Afterwards, we start from the one before last

memorized line (the ([n/k] 1)th) and we determine again the following k lines etc. Thus, we will

need an (k V+[n/k] V) memory space, while the algorithm’s execution time will be

(n V+k [n/k] V)= (n V). It is noticeable that the best choice for k is n1/2. In this case we have a

memory space of (n1/2 V).

Still – sometimes we must find a solution that is able to use less memory. We will present a

solution that uses a memory space of (V) and runs in (n V) time. The two matrices will be

constructed by using an implementation similar to the one presented above, with the following

change: instead of a vector with the significance of the ind vector we will use another vector

(named goto), where gotoj has the value of the partial sum of the j sum, wherein there are all the

coins used for obtaining the j sum, which have the indexes smaller than or equal to [n/2]

(j=0,…,V). For better understanding, we can think of the vector goto, as a “super-parent vector”,

that for values of i greater than [n/2] “points back” to line [n/2] of the matrix. The construction

of the goto vector is realized in the following way:

gotoj = j for i<=[n/2]

 gotoj-vi otherwise

Thus, after the execution of the n iterations, the gotoV value will represent the sum of the

elements in the searched solution, if coins whose indexes are at most equal to [n/2] are used.

By using this value, we will apply the Divide and Conquer method and we will solve the

task for the first [n/2] coins and the gotoV sum, respectively the rest of the coins and the V –

gotoV sum.

Let us analyze the complexity of this algorithm. Each subtask is made of two subtasks, one

of [n/2] dimension and gotoV and one of n [n/2] dimension and V – gotoV. A subtask of n

dimension and V has the (n V) complexity. So, the execution time necessary for the algorithm

is given by the recursive formula: T(n,V)= (n V)+T([n/2],gotoV)+T(n [n/2],V gotoV), where

we obtain T(n,V)= (n V). The proof of this is based on the usual methods, the most comfortable

being the substitution method or applying the Master Theorem.

The practical behavior of these variants is summarized in the following table. This time only

Borland Pascal implementations were used, on a random test case with n=250 and V=2000. The

algorithm was run 100 times, so the running time became big enough to be measureable.

Algorithmics of Knapsack Type Tasks

 7

Variant Memory complexity Memory usage Running time

1 O(n ∙V) 502751 bytes 0,6s

2 O(n
0.5

∙V) 136068 bytes 0,9s

3 O(V) 16508 bytes 1,4s

References

1. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, MIT

Massachussetts, 2001.

2. K. Ionescu – Introduction to Algorithms, University Press, Cluj, 2005 (in Hungarian).

3. Cs. Pătcaş, Algorithmics of the Knapsack Type Tasks, GInfo, Agora Media, Tg. Mureş,

15/6 (2006), 31–35 (in Romanian).

4. C. Silvestru-Negruşeri, Optimization of the Programs Using Bit Operations, GInfo, Agora

Media, Tg. Mureş, 14/5 (2004), 32–36 (in Romanian).

